#R-CDB5212F20284AE7A683E61E0A9B5A93
thin and outside the team.
Support the team in overcoming technical challenges encountered during project management and execution.
Qualifications:
Currently pursuing an undergraduate or graduate degree in computer science, software engineering, data science/AI, or a related field.
Solid understanding of large language models with practical experience using mainstream open-source models (e.g., Qianwen, GLM, LLMA).
Proficient in Python programming and familiar with at least one deep learning framework (e.g., TensorFlow or PyTorch).
Strong curiosity and self-motivation, capable of working efficiently in a fast-paced environment.
Excellent communication skills, able to clearly articulate complex technical concepts.
Familiarity with relevant technologies in large language models (LLMs): understanding the basic concepts and application frameworks of LLMs, such as Transformers, pre-trained models, prompt engineering, retrieval-augmented generation, fine-tuning, LangChain, etc.
Preferred Qualifications:
Experience winning awards or publishing papers in NLP or LLM-related competitions.
Familiarity with tools such as Hugging Face Transformers.
Awareness of the limitations and challenges of LLMs in real-world scenarios.
主要职责:
• 调研现有的大型语言模型及其应用场景,评估其对公司业务的潜在价值。
• 协助设计并实现基于LLM的原型系统,以解决具体的企业挑战或优化现有流程。
• 参与跨职能团队会议,就如何最好地利用LLM技术提出见解和建议。
• 文档化研究发现、实验结果和技术规格,以便于团队内外的知识共享。
• 支持团队在项目管理和执行过程中遇到的技术难题。
任职资格:
• 目前正在攻读计算机科学、软件工程、数据科学/人工智能或相关领域的本科或研究生学位。
• 对大型语言模型有扎实的理解,并能展示出使用主流开源模型(如Qianwen,GLM,LLMA)的实际经验。
• 具备Python编程技能,并且熟悉至少一种深度学习框架(如TensorFlow或PyTorch)。
• 强烈的好奇心和自我驱动力,能够在快速变化的环境中高效工作。
• 出色的沟通技巧,能够清晰地表达复杂的技术概念。
• 熟悉大语言模型 (LLM) 的相关技术: 了解 LLM 的基本概念和应用框架,例如 Transformer 、预训练模型、提示工程、检索增强生成、微调、LangChain等。
加分项:
• 在NLP或LLM相关竞赛中有获奖经历或发表过论文。
• 有使用过Hugging Face Transformers等工具的经验。
• 对LLM在实际场景中的局限性和挑战有一定的认识。
Job Systems/Information Technology
Organization Cummins Inc.
Role Category Hybrid
Job Type Student - Internship
ReqID 2403424
Relocation Package No